Die Bestimmung der Hydrolysebeständigkeit und Lichtechtheit der Bildfarbstoffe des Agfacolor-Materials

Von Reinhold Gröger

Die Entfärbung der Bildfarbstoffe des Agfacolor-Materials durch die Luftfeuchtigkeit ist ein hydrolytischer Prozeß. Für einen gelben Bildfarbstoff läßt sich folgendes Schema aufstellen [1]:

\[
\begin{align*}
R\overset{C=N}{\longrightarrow}N\overset{C\text{H}_4}{\longrightarrow} & + H_2O \rightarrow \\
R\overset{C=O}{\longrightarrow} & + NH_2\overset{C\text{H}_4}{\longrightarrow}N\overset{C\text{H}_4}{\longrightarrow}
\end{align*}
\]

Unsere Untersuchungen zeigten, daß der Farbrückgang bei dieser Reaktion exponentiell verläuft, wie es auch für hydrolytische Vorgänge von der Reaktionskinetik [2] gefordert wird (Abb. 1). Stellt man solche Hydrolysekurven logarithmisch dar — werden also in einem Diagramm die Farbdichten im logarithmischen Maßstab gegen die Zeit aufgetragen — erhält man Geraden, deren Neigungswinkel durch die Exponentialfunktionen der Hydrolysekurven bestimmt werden. Die Größe des Neigungswinkels, den die Geraden mit der Achse der logarithmischen Farbdichtenwerte bilden, gibt dann die Größe des Farbdichtenauffalls wieder, und man kann den Tangens des Neigungswinkels \(\alpha \) dieser Geraden als relatives Maß für die Hydrolysebeständigkeit der Bildfarbstoffe definieren (Abb. 2).

\[
\operatorname{tg} \alpha = R_\alpha (Y \text{ °C}; Z \% \text{ rel. L.F.})
\]

(1)
Bestimmung der Hydrolysebeständigkeit

Bezeichnet in der Definitionsgleichung die Beständigkeit des Bildfarbstoffes aus dem Kuppler X gegen Wasserdampf, wobei der Zahlenwert für die Hydrolysebeständigkeit bei 10° C und 70% relativer Luftfeuchtigkeit gefunden wurde.

Die Auswertung der Meßergebnisse erfolgt am günstigsten rechnerisch. Es gilt die allgemeine Formel:

\[\tan \alpha = \frac{t}{(\log D_a - \log D_b) \cdot 100} = B_x \] \hspace{1cm} (2)

Hierin bedeuten \(t \) die Lagerzeit der Sensitometerstreifen über Wasserdampf, \(D_A \) die Ausgangsfarbdichte und \(D_t \) die Farbdichte nach der Zeit \(t \).

Die absolute Größe des Farbdichtenabfalls hängt theoretisch von der Konzentration des Farbstoffes, d. h. hier von der Ausgangsfarbdichte ab. In der Praxis erhielten wir jedoch bei unseren Untersuchungen an Gelbfarbstoffen einen Farbdichtebereich, in dem der Farbrückgang, unabhängig von der Ausgangsfarbdichte, annähernd gleich groß ist, wobei der Farbdichtenabfall in diesem Gebiet am größten ist. Dieser Bereich liegt bei den Gelbfarbstoffen zwischen den Dichten 1,5 und 2,2, wenn die Gelbkuppler mit einer steilen Bromsilber-Emulsion für Positiv vergossen und die Einschichten-

9 Veröffentlichungen Agfa IX
materialien hinter einem Stufenkeil Faktor 2 mit 70 lx belichtet und der gebräuchlichen Positiv-Entwicklung (Wolfener Rezept) unterworfen werden. Den Farbdichteabfall in diesem empirisch ermittelten Gebiet benutzt man nun für die Bestimmung der Hydrolysebeständigkeit. Um Dichteschwankungen in der Filmschicht und apparative Meßfehler auszugleichen, verwendet man den Mittelwert der in diesem Gebiet erhaltenen Meßergebnisse für die Berechnung, wobei man als Ausgangsfarbdichte die Farbdichte 2 festlegt, um das Rechnen mit Differenzen von Logarithmen zu berücksichtigen. Für die Bestimmung der relativen Hydrolysebeständigkeit der gelben Bildfarbstoffe des Agfaolor-Materials geht somit Formel (2) in (3) über:

\[B_x = \frac{t}{\log 2 - \log (2 - M)} \cdot 100 \] (3)

\(M \) bedeutet hierin den Mittelwert der zwischen den Farbdichten 1,5 und 2,2 gemessenen Farbdichteänderungen \(D_A - D_t \).

Für die Bestimmung der relativen Hydrolysebeständigkeit von Purpur- und Blaugrünfarbstoffen lassen sich wahrscheinlich, analog wie oben, auf empirischem Wege spezielle Formeln aus (2) entwickeln.

Die Berechnung der Hydrolysebeständigkeit nach Formel (3) sei an dem Farbstoff aus dem Farbkuppler (4-Stearoylaminobenzoylacet)-aminobenzol-3′,5′-dicarbon säure (F 535) [3] demonstriert: Ein Sensitometerstreifen des Farbstoffes aus dem genannten Farbkuppler wird 72 Stunden bei 40 °C und 100% relativer Luftfeuchtigkeit gelagert. Man erhält dann in dem Farbdichtebereich von 1,5 bis 2,2 einen exponentiellen Farbdichteabfall von durchschnittlich 1,1. Nach Formel (3) errechnet sich dann für die relative Hydrolysebeständigkeit des Farbstoffes aus der Komponente F 535 der Wert 2,0.

\[B_{F 535}^{22} = \frac{72}{\log 2 - \log (2 - 1,1)} \cdot 100 = \frac{72}{34,68} \approx 2,0 \text{ (40°; 100%)} \]

Wie unsere Untersuchungen zeigten, geben andere Gelbfarbstoffe, je nach Haltbarkeit, bei denselben Bedingungen einen geringeren oder einen bis zu fünfzehnmal größeren Wert für die Hydrolysebeständigkeit. Es sei noch folgendes bemerkt: Für ein und denselben Farbstoff erhält man zuweilen bei verschiedenen Prüfungen verschiedene gestaltete Hydrolysekurven, wobei im Endergebnis die Größe des exponentiellen Farbdichteabfalls gleich ist. Die Hydrolyse der Farbstoffe erfolgt also nicht immer ideal, was sicher darauf zurückzuführen ist, daß die Farbstoffe nicht gelöst vorliegen, sondern in einer Gelatineschicht eingelagert sind. Bei der Auswertung der Meßergebnisse ist daher der gesamte exponentielle Farbdichteabfall zu berücksichtigen, wenn man zu richtigen Werten für die Hydrolysebeständigkeit kommen will. Wie Abb. 1 zeigt, verläuft die Hydrolyse der Farbstoffe aber nur bis zu einem bestimmten Punkt exponentiell, danach verläuft sie andersartig. Zur Kenntnis des gesamten exponentiellen Farbdichteabfalls muß man deshalb die hydrolytische Zersetzung der Farbstoffe genügend weit verfolgen. Die Fehlergrenze der Methode liegt in der Größenordnung von ± 10%.

Jeder Grenzfall liefert einen anderen Reaktionsmechanismus. Bei starker Lichtabsorption ist die Reaktion nullter Ordnung, bei schwacher Lichtabsorption erster Ordnung. Mathematisch erhält man im ersten Falle eine lineare, im zweiten eine logarithmische Gleichung. In der Praxis liegen beide Fälle vor, die anfangs linear verlaufende Lichtreaktion geht allmählich in eine logarithmische über. Das trifft auch

Abb. 3. Ausbleichkurven von Bildfarbstoffen aus Agfacolor-Materialien.

für das Ausbleichen der Bildfarbstoffe des Agfacolor-Materials zu, wie Abb. 3 zeigt. Auf Grund der Linearität zwischen dem Farbdichteabfall und der absorbierter Lichtenergie (s. Abb. 3) kann das Verhältnis aufgestellt werden:

\[
\frac{D_A - D_{\text{max}}}{M \times h} = \text{konstant} (C)
\]

Hierin bedeuten \(D_A\) die Ausgangsfarbdichte, \(D_{\text{max}}\) die Farbdichte nach Bestrahlung mit der Lichtenergie \(M \times h\) (Mega-Luxstunden) und \(M \times h\) die Lichtenergie, die den Farbdichteabfall \(D_A - D_{\text{max}}\) verursachte. Der reziproke Wert dieses Verhältnisses dient dann zur Charakterisierung der Lichtechtheit: Bei einer kleinen Differenz \(D_A - D_{\text{max}}\), also einem geringen Farbrückgang, hat das Verhältnis einen großen Wert, denfalls ist die Lichtechtheit des Farbstoffes groß. Im umgekehrten Falle ist die Lichtechtheit gering. Es wird definiert:

\[
\frac{1}{C} = L_x (\text{„Xenotest“})
\]

\(L_x\) bedeutet die Lichtechtheit des Farbstoffes aus dem Farbkuppler \(X\), ermittelt durch Bestrahlung in einem Lichtechtheitsprüfgerät hier im „Xenotest“ — Original Hanau (Quarzlampen-Gesellschaft m. b. H., Hanau/Mahn).

Definitionsgemäß kann nur der lineare Teil der Ausbleichkurven zur Bestimmung der Lichtechtheit benutzt werden. Wie unsere Untersuchungen ergaben, liegt der lineare Verlauf der Ausbleichreaktion bei Gelbfarbstoffen zwischen den Farbdichten 1,0 und 1,5 bis zu einem Farbdichterückgang von 0,2 bis 0,25. Diese Verhältnisse gelten für Sensitometerstreifen, die ebenso hergestellt wurden wie die zur Ermittlung der Hydrolysebeständigkeit bestimmten. Zwischen den Farbdichten 1,0 und 1,5 ist der Farbrückgang am größten. Für das geringere Ausbleichen bei Farbdichten über 1,5 kann keine befriedigende Erklärung gegeben werden.
Um den durch Messung am objektiven Farbdichtemesser und durch Dichte-
chwankungen in der Filmschicht entstehenden Fehler zu berücksichtigen, nimmt
man den Mittelwert \(D_A - D_{\text{MIX}} \) aller Meßwerte zwischen den Farbdichten 1,0 und
1,5, wobei der resultierende Mittelwert nicht größer als 0,25 sein soll. Die Bestimmung
der relativen Lichtechtheit der gelben Bildfarbstoffe des Agfacolor-Materials erfolgt
also nach der Formel:

\[
L_A = \frac{M_{\text{MIX}}}{D_A - D_{\text{MIX}}} \tag{6}
\]

Die Bestimmung der Lichtechtheit der Purpur- und Blaugrünfarbstoffe kann eben-
so erfolgen, wenn man die Bedingungen für die Berechnung der Lichtechtheit dieser
Farbstoffe ebenfalls auf empirischem Wege ermittelt.

Die Berechnung der Lichtechtheit sei wieder an dem Beispiel des Farbstoßes aus
der Komponente E 535 demonstriert: Wird ein Sensitometerstreifen dieses Farb-
stoffes im „Xenotest“ bestrahlt, so ergeben 1,2 Mega-Luxstunden eine Farbdichte-
änderung von 0,2. Nach Formel (6) erhält man für die Lichtechtheit des Farbstoffes
aus der Komponente E 535 den Wert 6,0:

\[
L_E = \frac{1,2}{0,2} = 6,0 \text{ („Xenotest“)}
\]

Nach unseren Untersuchungen können andere Gelbfarbstoffe je nach Beständigkeit
einen kleineren oder einen bis zu dreimal größeren Wert für die Lichtechtheit auf-
weisen.

Die Fehlergrenze der Methode liegt in der Größenordnung von ± 10%.

Zusammenfassung

Es werden Methoden beschrieben, mit denen man die Hydroysebeständigkeit und
Lichtechtheit von gelben (evtl. auch purpurroten und blaugrünen) Bildfarbstoffen des
Agfacolor-Materials zahlenmäßig charakterisieren kann und die im Prinzip auf der
Messung des Farbdichterückganges von in Gelatineschichten eingelagerten Farb-
stoffen beruhen.

Schrifttum

Die Arbeit wurde im Komponenten-Technikum unter Leitung von Dr. PIETRZOK durchge-
führt.