Please access detailed information on over 250 individual film color processes via the classification system on this page, display the Timeline of Historical Film Colors in chronological order, browse by image, search by color, search via the tag cloud at the end of this page or directly on the search page, or see the contributing archives’ collections on the header slides.
This database was created in 2012 and has been developed and curated by Barbara Flueckiger, professor at the Department of Film Studies, University of Zurich to provide comprehensive information about historical film color processes invented since the end of the 19th century including specific still photography color technologies that were their conceptual predecessors.
Timeline of Historical Film Colors was started with Barbara Flueckiger’s research at Harvard University in the framework of her project Film History Re-mastered, funded by Swiss National Science Foundation, 2011-2013.
In 2013 the University of Zurich and the Swiss National Science Foundation awarded additional funding for the elaboration of this web resource. 80 financial contributors sponsored the crowdfunding campaign Database of Historical Film Colors with more than USD 11.100 in 2012. In addition, the Institute for the Performing Arts and Film, Zurich University of the Arts provided a major contribution to the development of the database. Many further persons and institutions have supported the project, see acknowledgements.
Since February 2016 the database has been redeveloped in the framework of the research project Film Colors. Technologies, Cultures, Institutions funded by a grant from Swiss National Science Foundation. Since 2016, the team of the research project ERC Advanced Grant FilmColors has been collecting and adding written sources and photographs. All the members of the two research projects on film colors, both led by Barbara Flueckiger, have been capturing photographs of historical film prints since 2017.
Follow the links “Access detailed information ›” to access the currently available detail pages for individual processes. These pages contain an image gallery, a short description, a bibliography of original papers and secondary sources connected to extended quotes from these sources, downloads of seminal papers and links. We are updating these detail pages on a regular basis.
More than a decade of research on film colors, countless visits to archives to explore and document historical film colors for the Timeline has led the team to develop the scientifically proven multispectral scanning workflow Scan2Screen.
Based on an in-depth study of 8 leading commercial film scanners the team identified core requirements to capture historical film colors in a more comprehensive and future-proof way.
Since the earliest days of cinema, film has been a colorful medium and art form. More than 230 film color processes have been devised in the course of film history, often in close connection with photography. In this regard, both media institutionalized numerous techniques such as hand and stencil coloring as well as printing and halftone processes. Apart from these fundamental connections in terms of the technology of color processes, film and photography also share and exchange color attributions and aesthetics.
This publication highlights material aspects of color in photography and film, while also investigating the relationship of historical film colors and present-day photography. Works of contemporary photographers and artists who reflect on technological and culture-theoretical aspects of the material of color underline these relations. Thematic clusters focus on aesthetic and technological parallels, including fashion and identity, abstraction and experiment, politics, exoticism, and travel.
Color Mania contains a general introduction to color in film and photography (technique, materiality, aesthetics) as well as a series of short essays that take a closer look at specific aspects. An extensive image section illustrates the texts and color systems and continues the aesthetic experience of the various processes and objects in book form.
Edited by Barbara Flückiger, Eva Hielscher, Nadine Wietlisbach, in collaboration with Fotomuseum Winterthur
With contributions by Michelle Beutler, Noemi Daugaard, Josephine Diecke, Evelyn Echle, Barbara Flueckiger, Eirik Frisvold Hanssen, Eva Hielscher, Thilo Koenig, Joëlle Kost, Franziska Kunze, Bregt Lameris, David Pfluger, Ulrich Ruedel, Mona Schubert, Simon Spiegel, Olivia Kristina Stutz, Giorgio Trumpy, Martin Weiss, Nadine Wietlisbach
Design: Meierkolb
16 × 24 cm, 6 ¼ × 9 ½ in
240 pages, 122 illustrations
paperback
In June 2015, the European Research Council awarded the prestigious Advanced Grant to Barbara Flueckiger for her new research project FilmColors. Bridging the Gap Between Technology and Aesthetics, see press release of the University of Zurich and information on the University of Zurich’s website.
Subscribe to the blog to receive all the news: https://blog.filmcolors.org/ (check out sidebar on individual entries for the “follow” button).
Contributions to the Timeline of Historical Film Colors
“It would not have been possible to collect all the data and the corresponding images without the support from many individuals and institutions.Thank you so much for your contribution, I am very grateful.”
Barbara Flueckiger
Experts, scholars, institutions | Sponsors, supporters, patrons of the crowdfunding campaign, April 23 to July 21, 2012
Experts, scholars, institutions
Prof. Dr. David Rodowick, Chair, Harvard University, Department of Visual and Environmental Studies
Prof. Dr. Margrit Tröhler, Department of Film Studies, University of Zurich
Prof. Dr. Jörg Schweinitz, Department of Film Studies, University of Zurich
Prof. Dr. Christine N. Brinckmann, Department of Film Studies, University of Zurich
PD Dr. Franziska Heller, Department of Film Studies, University of Zurich
Dr. Claudy Op den Kamp, Department of Film Studies, University of Zurich
Prof. Anton Rey, Institute for the Performing Arts and Film, Zurich University of the Arts
Dr. Haden Guest, Director, Harvard Film Archive
Liz Coffey, Film Conservator, Harvard Film Archive
Mark Johnson, Loan Officer, Harvard Film Archive
Brittany Gravely, Publicist, Harvard Film Archive
Clayton Scoble, Manager of the Digital Imaging Lab & Photography Studio, Harvard University
Stephen Jennings, Photographer, Harvard University, Fine Arts Library
Dr. Paolo Cherchi Usai, Senior Curator, George Eastman Museum, Motion Picture Department
Jared Case, Head of Cataloging and Access, George Eastman Museum, Motion Picture Department
Nancy Kauffman, Archivist – Stills, Posters and Paper Collections, George Eastman Museum, Motion Picture Department
Deborah Stoiber, Collection Manager, George Eastman Museum, Motion Picture Department
Barbara Puorro Galasso, Photographer, George Eastman House, International Museum of Photography and Film
Daniela Currò, Preservation Officer, George Eastman House, Motion Picture Department
James Layton, Manager, Celeste Bartos Film Preservation Center, Department of Film, The Museum of Modern Art
Mike Pogorzelski, Archive Director, Academy Film Archive
Josef Lindner, Preservation Officer, Academy Film Archive
Cassie Blake, Public Access Coordinator, Academy Film Archive
Melissa Levesque, Nitrate Curator, Academy Film Archive
Prof. Dr. Giovanna Fossati, Head Curator, EYE Film Institute, Amsterdam, and Professor at the University of Amsterdam
Annike Kross, Film Restorer, EYE Film Institute, Amsterdam
Elif Rongen-Kaynakçi, Curator Silent Film, EYE Film Institute, Amsterdam
Catherine Cormon, EYE Film Institute, Amsterdam
Anke Wilkening, Friedrich Wilhelm Murnau Foundation, Wiesbaden, Germany
Marianna De Sanctis, L’Immagine Ritrovata, Bologna
Paola Ferrari, L’Immagine Ritrovata, Bologna
Gert and Ingrid Koshofer, Gert Koshofer Collection, Bergisch Gladbach, Germany
Memoriav, Verein zur Erhaltung des audiovisuellen Kulturgutes der Schweiz
BSc Gaudenz Halter, Software Development Color Film Analyses, video annotation und crowdsourcing platform VIAN, in collaboration with Visualization and MultiMedia Lab of Prof. Dr. Renato Pajarola, University of Zurich, (Enrique G. Paredes, PhD; Rafael Ballester-Ripoll, PhD) since 07.2017
BSc Noyan Evirgen, Software Development, in collaboration with Visualization and MultiMedia Lab von Prof. Dr. Renato Pajarola, Universität Zürich (Enrique G. Paredes, PhD; Rafael Ballester-Ripoll, PhD), 03.2017–01.2018
Assistants Film Analyses:
BA Manuel Joller, BA Ursina Früh, BA/MA Valentina Romero
The development of the project started in fall 2011 with stage 1. Each stage necessitated a different financing scheme. We are now in stage 3 and are looking for additional funding by private sponsors.
Read more about the financial background of the project on filmcolors.org.
The author has exercised the greatest care in seeking all necessary permissions to publish the material on this website. Please contact the author immediately and directly should anything infringe a copyright nonetheless.
Additive 3 color: mosaic screen, combined system, still photography
“New Agfa Color Plate (1923–1932): colored particles very small and not visible to the naked eye, but clumps of particles of the same color give the image a pointillist effect (Fig. 2.62). Unlike with the autochromes, in which the grains ...
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 73.
Additive 3 color: mosaic screen, combined system, still photography
“Agfacolor Plate (1932-1938): colored particles very small and not visible to the naked eye; clumps of particles of the same color give the image a pointillist effect (Fig. 2.63). Unlike with the autochromes, in which the grains are remarkably ...
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 72.
Additive 3 color: mosaic screen, combined system, still photography
“Agfacolor Film (1932–1934): individual colored particles cannot be seen with the naked eye, but clumps of grains of the same color give the image a pointillist effect (Fig. 2.70). There is no black pigment filler. The film has a thick base ...
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 76.
Additive 3 color: mosaic screen, combined system, still photography and 35mm MPF (1935–1936)
“Agfacolor Ultra Film (1934–1941): individual colored grains cannot be seen with the naked eye, but clumps of grains of the same color give the image a pointillist effect (Fig. 2.72). There is no black pigment filler. The film has a thick ...
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 76.
Additive 3 color: mosaic screen, combined system, still photography
“Agfacolor Ultra Plate (1936–1938): colored particles very small and not visible to the naked eye, but clumps of particles of the same color give the image a pointillist effect (Fig. 2.65). Unlike with the autochromes, in which the grains are ...
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 74.
Subtractive 3 color: dye destruction process, silver dye-bleach, still photography
“Between 1970 and 1976, Agfa-Gevaert produced its own silver dye-bleach printing material on a white-pigmented acetate base called Agfachrome CU 410.28 Only available to a few photofinishers in Germany, it was used to print amateurs’ ...
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 218.
“LENTICULAR PROCESS
In 1896 R. E. Liesegang (Ahriman, 1896) suggested a photographic color process based upon the use of banded filters in the camera aperture.
[…]
In 1909 R. Berthon (British Patent 10,611; see also Berthon, 1910a, b) ...
Kodacolor lenticular filter for the projector. Lichtspiel / Kinemathek Bern.
Credit: Rudolf Gschwind, Imaging and Media Lab, University of Basel.
Magnification of an area. Credit: Rudolf Gschwind, Imaging and Media Lab, University of Basel.
Color reconstruction test. Credit: Rudolf Gschwind, Imaging and Media Lab, University of Basel.
Source: Klein, Adrian Bernhard (Cornwell-Clyne) (1940): Colour Cinematography. Boston: American Photographic Pub. Co.
Microscopic linear lens structure of Kodacolor lenticular film.
Credit: David Pfluger, ERC Advanced Grant FilmColors. Imaging was performed with support of the Center for Microscopy and Image Analysis, University of Zurich.
Acetate plastic base of Kodacolor lenticular film embedded in epoxide resin. The emulsion layer usually placed on the opposite side of the acetate base has been removed beforehand and is therefore not visible.
Credit: David Pfluger, ERC Advanced Grant FilmColors. Imaging was performed with support of the Center for Microscopy and Image Analysis, University of Zurich.Credit: David Pfluger, ERC Advanced Grant FilmColors. Imaging was performed with support of the Center for Microscopy and Image Analysis, University of Zurich.
Focal travelling through the 3-dimensional structure of Kodacolor lenticular film. In the beginning the linear lenticular structure is visible and towards the end the emulsion layer comes into focus and the granular structure defined by the density of the silver is visible. In this shot the lenticules were showing towards the light source and the emulsion towards the camera. This enables an undistorted recording of the emulsion layer.
Credit: David Pfluger, editing by Martin Weiss, ERC Advanced Grant FilmColors. Imaging was performed with support of the Center for Microscopy and Image Analysis, University of Zurich.
Focal travelling through the 3-dimensional structure of Kodacolor lenticular film. In the beginning the linear lenticular structure is visible and towards the end the emulsion layer comes into focus. In this shot the lenticules were allocated towards the lens of the microscope and the light source at the side of the emulsion similar to the configuration in projection. As a consequence the graininess of the emulsion is not visible as with the film flipped to the other side. The structure is optically distorted perpendicular to the linear structure of the lenticules.
Credit: David Pfluger, editing by Martin Weiss, ERC Advanced Grant FilmColors. Imaging was performed with support of the Center for Microscopy and Image Analysis, University of Zurich.
Credit: Cinémathèque française, conservatoire des techniques, Paris.
Credit: Cinémathèque française, conservatoire des techniques, Paris.
Credit: Cinémathèque française, conservatoire des techniques, Paris.
Credit: Illustration by Sarah Steinbacher, Multimedia & E-Learning-Services, University of Zurich. Source: Ede, François (1994): Jour de fête ou la couleur retrouvée. Cahiers du Cinéma: Paris.
Principle of capturing and projecting lenticular film. Credit: Joakim Reuteler and Rudolf Gschwind, Digital Humanities Lab, University of Basel, Switzerland. Illustration by Sarah Steinbacher, Multimedia & E-Learning-Services, University of Zurich.
Principle of capturing and projecting lenticular film. Credit: Joakim Reuteler and Rudolf Gschwind, Digital Humanities Lab, University of Basel, Switzerland. Illustration by Sarah Steinbacher, Multimedia & E-Learning-Services, University of Zurich.
Principle of capturing and projecting lenticular film. Credit: Joakim Reuteler and Rudolf Gschwind, Digital Humanities Lab, University of Basel, Switzerland. Illustration by Sarah Steinbacher, Multimedia & E-Learning-Services, University of Zurich.
Microscopic image of a piece of Keller-Dorian lenticular film embedded in epoxide resin. The 3-dimensional structure of the lenticules is visible as well as the thin emulsion layer on the other side of the acetate base.
Credit: Sample preparation and imaging by the Center for Microscopy and Image Analysis, University of Zurich.
Lenticular surface of the acetate plastic base of Keller-Dorian lenticular film. On the back plane of the acetate layer and therefore out of focus in this image, structures defined by the silver image in the emulsion layer can be perceived.
Credit: David Pfluger, ERC Advanced Grant FilmColors. Imaging was performed with support of the Center for Microscopy and Image Analysis, University of Zurich.
Hexagonal structure of the lenticules of Keller-Dorian lenticular film.
Credit: David Pfluger, ERC Advanced Grant FilmColors. Imaging was performed with support of the Center for Microscopy and Image Analysis, University of Zurich.
Microscopic images of the Keller-Dorian lenticular structure with the focus set at different points. The images have been chained to show a travelling through the 3-dimensional structure of the bee-hive shaped lenticules.
Credit: David Pfluger, conversion to video by Martin Weiss, ERC Advanced Grant FilmColors. Imaging was performed with support of the Center for Microscopy and Image Analysis, University of Zurich.
Subtractive 3 color: dye coupling or chromogenic process, still photography
“Ansco Color Printon
In 1943 Ansco followed suit and launched a printing material on white-pigmented acetate base called Ansco Color Printon (Fig. 5.7). Initially, Printon was made accessible only to the military. After 1945 it became available to ...
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 167.
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 166.
Source: Hübl, Arthur Freiherr von (1904): Die Dreifarbenphotographie mit besonderer Berücksichtigung des Dreifarbendruckes und der photographischen Pigmentbilder in natürlichen Farben. Halle a. S.: Druck und Verlang von Wilhelm Knapp. Photograph by Martin Weiss, ERC Advanced Grant FilmColors.
Source: Hübl, Arthur Freiherr von (1904): Die Dreifarbenphotographie mit besonderer Berücksichtigung des Dreifarbendruckes und der photographischen Pigmentbilder in natürlichen Farben. Halle a. S.: Druck und Verlang von Wilhelm Knapp. Photograph by Martin Weiss, ERC Advanced Grant FilmColors.
Source: Hübl, Arthur Freiherr von (1904): Die Dreifarbenphotographie mit besonderer Berücksichtigung des Dreifarbendruckes und der photographischen Pigmentbilder in natürlichen Farben. Halle a. S.: Druck und Verlang von Wilhelm Knapp. Photograph by Martin Weiss, ERC Advanced Grant FilmColors.
Source: Hübl, Arthur Freiherr von (1904): Die Dreifarbenphotographie mit besonderer Berücksichtigung des Dreifarbendruckes und der photographischen Pigmentbilder in natürlichen Farben. Halle a. S.: Druck und Verlang von Wilhelm Knapp. Photograph by Martin Weiss, ERC Advanced Grant FilmColors.
Source: Hübl, Arthur Freiherr von (1904): Die Dreifarbenphotographie mit besonderer Berücksichtigung des Dreifarbendruckes und der photographischen Pigmentbilder in natürlichen Farben. Halle a. S.: Druck und Verlang von Wilhelm Knapp. Photograph by Martin Weiss, ERC Advanced Grant FilmColors.
Source: Hübl, Arthur Freiherr von (1904): Die Dreifarbenphotographie mit besonderer Berücksichtigung des Dreifarbendruckes und der photographischen Pigmentbilder in natürlichen Farben. Halle a. S.: Druck und Verlang von Wilhelm Knapp. Photograph by Martin Weiss, ERC Advanced Grant FilmColors.
Source: Hübl, Arthur Freiherr von (1904): Die Dreifarbenphotographie mit besonderer Berücksichtigung des Dreifarbendruckes und der photographischen Pigmentbilder in natürlichen Farben. Halle a. S.: Druck und Verlang von Wilhelm Knapp. Photograph by Martin Weiss, ERC Advanced Grant FilmColors.
Source: Hübl, Arthur Freiherr von (1904): Die Dreifarbenphotographie mit besonderer Berücksichtigung des Dreifarbendruckes und der photographischen Pigmentbilder in natürlichen Farben. Halle a. S.: Druck und Verlang von Wilhelm Knapp. Photograph by Martin Weiss, ERC Advanced Grant FilmColors.
Source: Hübl, Arthur Freiherr von (1904): Three-Colour Photography. Three-Colour Printing and the Production of Photographic Pigment Pictures in Natural Colours. London: W.A. Penrose.
Source: Hübl, Arthur Freiherr von (1904): Die Dreifarbenphotographie mit besonderer Berücksichtigung des Dreifarbendruckes und der photographischen Pigmentbilder in natürlichen Farben. Halle a. S.: Druck und Verlang von Wilhelm Knapp. Photograph by Martin Weiss, ERC Advanced Grant FilmColors.
Three black-and-white color separations were printed consecutively on one film strip and projected through the corresponding color filters, thus combining to one color image on screen.
Subtractive 3 color: Mordant toning, still photography
“In the imbibition process, a dye image is transferred from a gelatin relief image to a receiving layer made either of paper or film. Charles Cros described this method of ‘hydrotypie’ transfer printing in 1880 and suggested it ...
Subtractive 3 color: Mordanting, dye transfer, wash-off relief, still photography
“In 1916 Traube found that copper toning baths3 were especially suitable for dye mordanting and patented the Uvachrome process.4 At the time, Germany was at war with most of Europe, and little commercial progress was made until the end of ...
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 103.
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 277.
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 138.
Subtractive 3 color: dye imbibition process, still photography
“Uvatype was yet another variation of the dye imbibition process, introduced by the Uvachrome Company of Germany in 1929 (Fig. 4.12). Its inventor, the German chemist Arthur Traube, worked diligently to improve the then-available imbibition ...
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 138.
Subtractive 2 color: Beam-splitter, double-coated film
“The principle of the subtractive colour process was described first by Louis Ducos du Hauron in 1868.
Although eminently suitable for colour motion pictures, the principle could not be applied until means were found of producing several colour ...
Additive 3 color: Mosaic screen, still photography
“The Autochrome process was the first fully practical single-plate colour process to reach the photographic public. It was easy to use. The plate was loaded into a conventional holder, glass to the front. The exposure was made through a yellow ...
Photomicrograph (50x) of an Autochrome mosaic screen. Credit: Courtesy of George Eastman House, International Museum of Photography and Film.
Source: Lavédrine, Bertrand (2009): Photographs of the Past. Process and Preservation. Los Angeles: Getty Publications.
Source: Coote, Jack H. (1993): The Illustrated History of Colour Photography. Surbiton, Surrey: Fountain Press.
Source: Coote, Jack H. (1993): The Illustrated History of Colour Photography. Surbiton, Surrey: Fountain Press.
Source: Holme, Charles (1908): Colour Photography, and Other Recent Developments of the Art of the Camera. London, Paris, New York.: Offices of The Studio.
Source: Holme, Charles (1908): Colour Photography, and Other Recent Developments of the Art of the Camera. London, Paris, New York.: Offices of The Studio.
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 70.
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 26.
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 65.
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 27.
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 235.
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 64.
Several attempts were made to apply the Autochrome process invented by the Lumière brothers to motion pictures.
Transparent potato starch grains with a diameter of 15–20 micrometer were colored in the additive primaries red, green and blue. The ...
Source: Eggert, John (1932): Kurzer Überblick über den Stand der Farbenkinematographie. Bericht über den VIII. Internationalen Kongress für wissenschaftliche und angewandte Photographie, Dresden 1931, pp. 214-222. Leipzig: J. A. Barth.
Cinécolor, mosaic screen, ca. 1929. Credit: Gert Koshofer Collection. Sample No. 68. Photograph by Barbara Flueckiger.
Credit: Cinémathèque française, conservatoire des techniques, Paris.
Magnification of an image area. Source: Eggert, John (1932): Kurzer Überblick über den Stand der Farbenkinematographie. Bericht über den VIII. Internationalen Kongress für wissenschaftliche und angewandte Photographie, Dresden 1931, pp. 214-222. Leipzig: J. A. Barth.
Source: Eggert, John (1932): Kurzer Überblick über den Stand der Farbenkinematographie. Bericht über den VIII. Internationalen Kongress für wissenschaftliche und angewandte Photographie, Dresden 1931, pp. 214-222. Leipzig: J. A. Barth.
Subtractive 3 color: pigment process, still photography
“Introduced by the Autotype Company in 1944, the Autotype Wet Carbon Process was a variant of the traditional carbon process with novelty wet-printing pigment papers. Considerable time was saved when printing with this material as the pigment ...
Béla Gaspar (Gasparcolor Naturwahre Farbenfilm GmbH, Berlin)
Subtractive 3 color: Silver dye-bleach multilayer print film
Gasparcolor was the first three-color multi-layer monopack film available for practical use. It was a double-coated print film with a cyan layer on one side and two layers dyed magenta and yellow on the other side (see illustrations).
Uit het rijk der kristallen (NDL 1927?, J.C. Mol). Credit: EYE Film Museum. Photographs of the Dufaycolor and Gasparcolor nitrate print by Barbara Flueckiger.
Kreise (English title Circles) (Oskar Fischinger, GER 1933-34) Oskar Fischinger's own nitrate print. Credit: Library of Congress, (c) Fischinger Trust, courtesy Center for Visual Music. Photograph Fischinger's own nitrate print by Barbara Flueckiger.
Credit: (c) Fischinger Trust, courtesy Center for Visual Music. Film: Allegretto by Oskar Fischinger (1936-1943).
Credit: (c) Fischinger Trust, courtesy Center for Visual Music. Film: Gasparcolor tests by Oskar Fischinger, c. 1933-34.
Credit: Cinémathèque suisse. Film: Komposition in Blau (Composition in Blue) AKA Lichtkonzert Nr. 1 (Light-Concert No. 1) (GER 1935, Oskar Fischinger).
Source: Coe, Brian (1981): The History of Movie Photography. Westfield, N.J.: Eastview Editions.
Color chart on Agfa Tripofilm. This was the raw stock used for Gasparcolor in Germany until about 1939. Source: Arens, Hans; Heymer, Gerd (1939): Die „Agfa-Farbentafel für Farbenphotographie“. In: Veröffentlichungen des wissenschaftlichen Zentral-Laboratoriums der photographischen Abteilung Agfa, Vol. 6, 1939, pp. 225-229. Leipzig: Hirzel. Photograph by Barbara Flueckiger.
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 213.
Subtractive 3 color: dye destruction process, silver dye-bleach, still photography
“In 1944 he launched a new reflection printing material on a white-pigmented acetate base called Gasparcolor Opaque, which was, initially and for the duration of the war, available only to the U.S. military. The processing of Gasparcolor Opaque ...
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 235.
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 228.
“One of the most elegant solutions to the problem of forming a colored image, lies in the utilization of the products formed by the action of the developer upon the latent image. By this means there is formed a dye image whose intensity follows ...
Source: Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 161.
The procedure for obtaining the lenticular elements in relief required a series of steps: starting from three black and white positive color separations, obtained with any of the available methods, three matrices were printed, from which the film to ...
Projection of lenticular film in Bocca-Rudatis. Refraction of light beams through lens. Source: Pierotti, Federico (2016): Un'archeologia del colore nel cinema italiano. Dal Technicolor ad Antonioni. Pisa: Edizioni ETS, p. 81.
Additive 3 color: regular mosaic screen, still photography
“Paget plates were discontinued in the early 1920s. Apparently production costs had risen to an almost prohibitive amount after World War I due to the difficulties of producing screen plates without defect (Offer 1926).
The product reemerged ...
Subtractive 4 color: pigment process, still photography
“In the early 1980s photographers frustrated by the poor stability of dye coupling materials started to experiment with pigment processes. Among them was Charles Berger, a California-based fine art photographer who, in 1982, developed a modern ...
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 93.
Pénichon, Sylvie (2013): Twentieth Century Colour Photographs. The Complete Guide to Processes, Identification & Preservation. London, Los Angeles: Thames & Hudson, p. 94.